E-mail Print PDF
Konstantinos Krampis

Konstantinos Krampis, Associate Professor of Biological Sciences
Email: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
Rm. 467F Belfer Research Building
413 East 69th Street
New York, NY 10021

Phone: (212) 396-6930

Lab Web Site:http://krampis.bioweb.hunter.cuny.edu


Research Interest:

Developing Cross-platform, scalable Science as a Service (SciaaS) infrastructures for genomic sequencing data analysis.

With the growth in sequencing throughput and reduction of sequencing cost tens of TeraBytes of data have been released in the recent five years. Acquiring the reads during a whole genome shotgun sequencing project is only the first step, and must be followed by bioinformatic analysis that involves running post-sequencing data analysis software, such as read quality checks, trimming and barcode deconvolution, in addition to assembly, annotation. Furthermore, with the recently available bench-top genome sequencing instruments, such as MiSeq from Illumina, the technology for sequencing small to medium-sized genomes has become affordable for researchers in smaller laboratories. Given the scale of genomic datasets, scientific value cannot be obtained from an investment in a sequencer, unless it is accompanied by an equal investment in bioinformatics infrastructure. Processing large amounts of genomic data requires access to a range of technical capabilities including expertise in information technology, bioinformatics, and software engineering, as well as to large-scale computational and storage capabilities. For smaller laboratories these requirements can become a significant impediments, as in addition to coming up with the funds for building an informatics infrastructure with capacity to handle large-scale sequence data, they also need funds for hiring trained professionals competent to install, configure and run the bioinformatics tools, which after all can present a higher expense than that of acquiring the hardware.
Virtual Machines (VMs) can address one of the main problems for making open-source software with complex dependencies and installation procedures widely accessible to the research community. Furthermore, virtualization technologies have led to the development of cloud computing services, where remote computer server farms can be rented on an hourly basis by researchers and used for scalable, on-demand computation. This has provided researchers with the potential to eliminate many of the upfront capital and effort expenses of building technology infrastructure for genome sequencing informatics, and result in transformation of the analysis and data processing tasks into well-defined operational costs. Furthermore, adoption of cloud computing technologies is providing an opportunity to democratize the sequencing informatics field, meaning that individual researchers and labs can now have access to the resources that were previously only available to institutions with large bioinformatic core facilities.
By leveraging virtualization technology, we can develop a novel model for bioinformatics infrastructure called Science as a Service (SciaaS). Following this model, bioinformatics developers can build software and data analysis pipelines inside a VM, that can run on computing environments ranging from lab computers, data center clusters and cloud computers. A SciaaS computing model for bioinformatics, can remove the bottleneck faced by smaller, independent laboratories for the use of genomic technologies, since sequencing data analysis requires access to a range of technical capabilities including expertise in information technology, software engineering, as well as to large-scale computational and storage capabilities with the use of cloud computing. We believe that with this computing computing model we can enhance translational research by facilitating access to analysis tools to dispersed groups working on common projects.

Selected Publications

Last Updated ( Wednesday, 09 March 2016 17:22 )